Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 308: 768-776, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007809

ABSTRACT

The effective composition, antioxidant, enzyme inhibition and bile binding ability of Ginseng flowers after different steaming times were studied. The results showed that different steaming times affected the effective components of ginseng flower, the content of polysaccharide and total saponins reached the highest when steaming for 5 times, the total flavonoids and phenol increased with the times of steaming. Steaming treatment significantly induced the ability of antioxidant and inhibition of α-amylase; but reduced the inhibition of α-glucosidase and cholate binding ability. Steaming treatment improved the effective content of ginseng flower and facilitate the production of low polar saponins; steaming changes the composition of ginsenoside.


Subject(s)
Ginsenosides , Panax , Saponins , Panax/chemistry , Antioxidants/analysis , Ginsenosides/pharmacology , Ginsenosides/analysis , Ginsenosides/chemistry , Saponins/analysis , Saponins/chemistry , Saponins/pharmacology , Flowers/chemistry
2.
Stud Health Technol Inform ; 308: 777-784, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007810

ABSTRACT

This study investigates how three different extraction methods impact the biological activity and structure characteristics of polysaccharides from the flower of Panax ginseng C.A. Meyer. The three polysaccharides were named AHEP, DWEP and ANEP that extracted by acid solvent (HCL 0.01 mol/L), distilled water and alkali solvent (NaOH 0.01 mol/L) respectively. The results showed that the yield of ANEP was highest compared to the others, as well as the capacity of antioxidant, cholate-binding and inhibition to α-glucosidase were better than AHEP and DWEP (P<0.05). Moreover, the activity retention rate in vitro with simulated digestion demonstrated that ANEP were superior to AHEP and DWEP. The large components, nominated ANEP-1 and ANEP-2, were eluted from the ANEP by DEAE-52-cellulose. UV-Vis and FT-IR analysis demonstrated that ANEP-1 and ANEP-2 had typical characteristic absorption of proteoglycan, but SEM results showed that the surface shapes of ANEP-1 and ANEP-2 were quite different. It can be concluded that ANEP has great potential as an effective strategy for obtaining polysaccharides from ginseng flower.


Subject(s)
Panax , Panax/chemistry , Spectroscopy, Fourier Transform Infrared , Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...